Structural and functional study of the phenicol-specific efflux pump FloR belonging to the major facilitator superfamily.
نویسندگان
چکیده
The florfenicol-chloramphenicol resistance gene floR from Salmonella enterica was previously identified and postulated to belong to the major facilitator (MF) superfamily of drug exporters. Here, we confirmed a computer-predicted transmembrane topological model of FloR, using the phoA gene fusion method, and classified this protein in the DHA12 family (containing 12 transmembrane domains) of MF efflux transporters. We also showed that FloR is a transporter specific for structurally associated phenicol drugs (chloramphenicol, florfenicol, thiamphenicol) which utilizes the proton motive force to energize an active efflux mechanism. By site-directed mutagenesis of specific charged residues belonging to putative transmembrane segments (TMS), two residues essential for active efflux function, D23 in TMS1 and R109 in TMS4, were identified. Of these, the acidic residue D23 seems to participate directly in the affinity pocket involved in phenicol derivative recognition. A third residue, E283 in TMS9, seems to be necessary for correct membrane folding of the transporter.
منابع مشابه
Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily
Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pum...
متن کاملFrequency of PGP and MRPA efflux pump genes in drug resistance in clinical isolates of Leishmania tropica and L. major
This study aimed to identify PGP and MRPA genes in clinical isolates of Leishmania. The genes of pgpa (MRPA) and mdr1 (PGP) are involved in the drug resistance, their products act as dependent transporters of ATP (ABC Transporter) in the reflux of drugs from the cytosol to the outer space of the cell. Hence, 40 volunteers with leishmaniasis were randomly selected. Firstly, Amastigotes were exam...
متن کاملMembrane homoeostasis and multidrug resistance in yeast.
The development of MDR (multidrug resistance) in yeast is due to a number of mechanisms. The most documented mechanism is enhanced extrusion of drugs mediated by efflux pump proteins belonging to either the ABC (ATP-binding cassette) superfamily or MFS (major facilitator superfamily). These drug-efflux pump proteins are localized on the plasma membrane, and the milieu therein affects their prop...
متن کاملThe multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis.
BACKGROUND Both intrinsic and acquired multidrug resistance play an important role in the insurgence of tuberculosis. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors that block the multidrug transporter and allow traditional antibiotics to be effec...
متن کاملCraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii.
Acinetobacter baumannii has been increasingly associated with hospital-acquired infections, and the presence of multidrug resistance strains is of great concern to clinicians. A. baumannii is thought to possess a great deal of intrinsic resistance to several antimicrobial agents, including chloramphenicol, although the mechanisms involved in such resistance are not well understood. In this work...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 49 7 شماره
صفحات -
تاریخ انتشار 2005